
BROUGHT TO YOU IN PARTNERSHIP WITH

1

Dedicated Device
Deployment Essentials
Developing Applications on Dedicated Devices
for End Users

RADIVOJE OSTOJIC
PRINCIPAL SOFTWARE ENGINEER, BRIGHTMARBLES

CONTENTS

• What Are Dedicated Devices?
− Mobile Device Management

• Essentials to Dedicated Device
Deployment

− Hardware Solutions

− Application Development
Technology Stack

− Custom Device UX

− Deployment Pipelines

− Remote Debugging and
Support Tools

− Logistics

• Conclusion
− Additional Resources

As industries continually change and evolve, there is a need for

devices that can meet specific requirements, which classic consumer

devices are unable to support. Such devices are called dedicated

devices and are built based on the required functionality. And similar

to consumer devices, they consist of two components — hardware

and software — and both have a minimum set of features needed to

make the use case work flawlessly.

This Refcard covers the end-to-end essentials of dedicated

devices  — from considerations in choosing a hardware solution and

a development technology stack to processes and approaches for

developing and maintaining applications on these devices. In most

cases, dedicated devices use the Android OS, so these concepts will

be explored using this open-source platform as an example.

WHAT ARE DEDICATED DEVICES?
Dedicated devices are also called corporate-owned-single-use

(COSU) devices. They represent single-purpose enterprise units,

which were developed with a focus on configuration (e.g., display,

ports, peripherals). These devices were first widely used during the

early 1980s in the retail sector for credit card machines, but today,

they are used across various markets — from finance and healthcare

to autonomous vehicles and drones.

If we compare dedicated devices with widespread consumer devices,

we can see that dedicated devices today can be as powerful as

consumer devices. However, they serve a different purpose. Effective

dedicated devices give enterprises more control and allow them

to design the perfect product and user experience to meet the

expectations of their use case. They can also be set up to run multiple

tasks simultaneously, although this isn’t always the case. When

looking at the big picture of dedicated devices, we can conclude that

they have several main features:

• Owned by the enterprise

• May have one or more applications that are selected by the

enterprise and often have restricted interactions, such as

running in kiosk mode

• Designed to deliver specific product and user experiences,

normally delivering functionality that relates to this goal

• Reliable, secure, and can remain in always-on mode

MOBILE DEVICE MANAGEMENT

To make the product complete, it needs to contain hardware, an

operating system (OS), and a cloud platform — although it is possible

to run devices with no cloud platform, as older providers may still

https://bymason.com/products/how-it-works/?utm_source=dzone&utm_medium=paid&utm_campaign=refcard
https://developer.android.com/work/dpc/dedicated-devices
https://deviq.io/resources/articles/what-is-cosu/

Tired of having a fragmented

mobile infrastructure stack?

Want full end to end control of your

dedicated devices?

Fast, Fearless

Development

Control

Through Code

Speed through

Automation

Predictable

Hardware

Sign up for an account today

Build a custom Android

OS in seconds. Use a

simple YML fle to

standardi%e the OS

across your feet.

Control every aspect

of your development

with code — from

OS confguration to

hardware functionality.

Use automation to

decrease time spent

testing, releasing and

provisioning. Spend your

time guilding great

features and products.

Consistent, reliagle

infrastructure. Stop

spending cycles

refactoring and testing

every time consumer

hardware changes.

Hardware - OS - Fleet Management - Logistics

CREATE AN ACCOUNT

https://platform.bymason.com/controller/signup?utm_source=dzone&utm_medium=paid&utm_campaign=refcard

3 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | DEDICATED DEVICE DEPLOYMENT ESSENTIALS

do. In that case, devices are provisioned and maintained in person,

and periodic site visits or other touchpoints are used to monitor it.

There is no communication between the device and remote support

or IT; however, this is an outdated model that has high personnel

and logistical costs with low capabilities to respond to problems or

evolving needs. The majority of mobile device management (MDM)

platforms do not have hardware. In most cases, hardware is bought

separately, and then an MDM is selected to manage these devices.

Depending on the OS (e.g., Android, Linux, etc.), it is necessary to

create application code that enables adequate use of hardware

functionality.

Each of the devices should have predefined application software

connected to the enterprise back end and cloud-based device

management. There is also a set of well-defined rules by which

devices are managed. In addition to being a set of consumer

applications with different configurations, back-end infrastructures,

certificates, and licenses, MDM has several important functionalities

that are crucial for the entire system:

• Remote, real-time analysis, diagnosis, verification,

and monitoring of errors

• Regular update of applications, functionalities, etc.

• Clear and secure connections between the various

system components

ESSENTIALS TO DEDICATED DEVICE
DEPLOYMENT
After the decision to build a dedicated device that is widely available

to users, it is necessary to make a few key decisions when it comes

to hardware, the application development technology stack,

customized device UX, deployment, and remote debugging and

logistics. Each of these concepts represents an important segment of

the entire system, and if one is selected incorrectly, it can affect the

quality of the entire product.

CHOOSING A HARDWARE SOLUTION

Hardware can impact the quality, user experience, and stability of

the entire system. There are many factors to consider when choosing

the right hardware, including:

• Does the device support all use cases of the project?

• What is the price-performance ratio?

• How easy is it to establish a setup of devices for development

and distribution to users?

• Does the device have all the right certifications, if needed,

based on industry?

• Most importantly, do these all fit into the project budget?

COTS VS. DIY
Dedicated devices can be divided into two groups: off-the-shelf

devices (COTS) and custom devices (DIY). COTS devices are mainly

developed by original equipment manufacturers (OEMs), and they

are usually available to a larger number of users. Some prominent

OEMs are Samsung, Apple, LG, Mason, and others.

DIY devices are custom devices created exclusively depending on

the needs and specifications of the project. They may be customized

versions of modular off-the-shelf options, or something designed

specifically for the purposes of the project. They may rely on an

operating system like Android OS or may use only microcontrollers

and low-level firmware to manage their processes. Some solutions

include Raspberry Pi, Mason, and OEM/original design manufacturer

(ODM) catalog devices. DIY or out-of-country options typically require

evaluating the device for certifications, checking for regulatory

compliance, performing your own quality assurance, etc. Also,

import/export laws and the certifications required may change.

SELECTING AN APPLICATION DEVELOPMENT

TECHNOLOGY STACK

In most cases, dedicated devices use an Android operating system;

therefore, the natural choice for the mobile application stack

is Android's SDK. Native Android development requires a basic

understanding of how the Android OS works and how the connection

between software and hardware is established. When it comes to the

language for developing Android applications, Java or Kotlin, among

other possible languages, can be used. Java is a proven programming

language with many open-source tools and libraries available that

can facilitate the development process. Also, most of the Android SDK

code is written in Java.

On the other hand, Kotlin is increasingly taking the lead in Android

mobile application development. Almost all the latest and greatest

Android apps use Kotlin or largely transfer their Java code to Kotlin.

Kotlin is designed to improve the flaws and shortcomings of Java and

is currently clean, lightweight, and less verbose. The Android team

recommends Kotlin for the development of Android applications, and

Kotlin is many times the first choice of languages.

KOTLIN VS. JAVA OVERVIEW

FEATURE KOTLIN JAVA

Lightweight ✓ X

Null safety ✓ X

Extension functions ✓ X

Smart casts ✓ X

Checked exception X ✓

Lambda expressions ✓ X

https://en.wikipedia.org/wiki/Mobile_device_management
https://csrc.nist.gov/glossary/term/commercial_off_the_shelf
https://csrc.nist.gov/glossary/term/commercial_off_the_shelf

4 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | DEDICATED DEVICE DEPLOYMENT ESSENTIALS

The table above shows some primary offerings of Java and Kotlin. For

more details, see how Kotlin compares to Java: https://kotlinlang.

org/docs/comparison-to-java.html

In addition to native development, it is possible to use cross-platform

technologies — the most represented include Flutter, ReactNative,

Xamarin, and the increasingly popular, relatively new Kotlin multi-

platform (KMM). This approach makes sense if you need to develop

the application with one source code on several platforms, such as

on an Android device and on a web platform (this option is offered by

Flutter) to save money and development time. The major difference

between native and cross-platform development is that native is

much safer, has faster performance, and is very responsive, which

leads to a generally enhanced user experience. The disadvantages

are that it can run only on one platform, the cost of software

development is higher, and it requires more developer resources.

In contrast, cross-platform development is far cheaper, the code

can be used on more platforms, and in most cases, it requires fewer

developer resources. The disadvantages are mainly related to

limited device feature support and performance delays. Additionally,

features that are not supported in the cross-platform must be

developed in the native platform, and this requires the mandatory

presence of a native mobile developer on each team.

CUSTOMIZING THE DEVICE UX

The appearance of the application plays a decisive role in what kind of

experience the user will have. Often, the user interface (UI) influences

whether the user will like the product or not, as well as whether they

will continue to use it. Due to these factors, it is crucial that the device

offers maximum flexibility and freedom regarding its design.

With custom OS development, it is possible to change the entire UI

system to meet the project requirements. A concrete example of

this is Android Automotive within the Android Open Source Project

(AOSP), where a separate UI system was created (Android Automotive

System UI) using components and core applications for OEMs, users,

and developers. You can explore this example further here:

https://source.android.com/devices/automotive

Some OEMs make it easy to configure the base OS of their device

through a YML configuration file, starting from the boot-up animation

to turning hardware components on and off (such as a camera). This

flexibility simplifies the customization process and allows developers

who may not have deep system knowledge to easily change the OS.

In addition to this approach, there are EMM/MDM options available,

primarily offered by large manufacturers. These providers have

devices with predefined UI that can also be changed depending on

the needs of the client via their managed services. If, for example, a

client wants a specific design for the Android Launcher, modifications

can be made in the config file by the provider. A simple use case is

a company that provides devices to their employees with a specific

login method, custom Android Launcher design, and limited number

of applications. Another example is kiosk mode on top of the Android

OS layer, which can generally have only one application that supports

a single function, or a set of applications that are locked by the IT

admin. Also, the UI can be modified inside custom read-only memory

(ROMs) using rooting.

CREATING A DEPLOYMENT PIPELINE

Deploying software is one of the most important and complex

processes of the SDLC. This step includes selecting the appropriate

deployment method, automating the deployment process to reduce

the risk of human errors, increasing the deployment speed, and

streamlining the process overall. There are several platforms on the

market that cover and automate many parts of this process, such as

AppCenter, AWS CodeDeploy, and CircleCI, as well as tools that can be

used in conjunction with these and integrated into any deployment

pipeline or workflow, enabling automation — for example, Mason

with Jenkins and Kubernetes.

As shown in the image above, there is a difference between continuous

delivery and continuous deployment. Continuous delivery refers to

the delivery of code to the testing team, and continuous deployment

refers to the deployment of code to the production environment.

REMOTE DEBUGGING AND SUPPORT TOOLS

It is completely common for minor or major errors to occur in

production; in extreme situations, it is even possible for the entire

system to stop. To avoid such situations, devices running Android

OS often offer options for remote debugging and support tools. A

dedicated Android device is debugged via the development machine

on which the DevTools instance is located.

From there, the content on the Android device is screencast to the

DevTools instance. It is then possible to use Team Viewer, Remote

ADB tool — which allows developers to connect to the ADB shell

https://kotlinlang.org/docs/comparison-to-java.html
https://kotlinlang.org/docs/comparison-to-java.html
https://kotlinlang.org/docs/mobile/home.html
https://kotlinlang.org/docs/mobile/home.html
https://source.android.com/devices/automotive
https://developer.chrome.com/docs/devtools/remote-debugging/

5 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | DEDICATED DEVICE DEPLOYMENT ESSENTIALS

service of an Android dedicated device over the network and execute

necessary terminal commands — or a number of enterprise devices

with MDM included (e.g., VMware Workspace One). This approach

requires interaction on both the client and server side, but there are

often devices for which it is not possible to have someone on the client

side run the debugging tool. In these situations, some manufacturers

offer touchless support and debugging. Such systems themselves

can recognize the error or abnormal behavior of the software, and

this can be implemented as a separate feature, add-on, or a special

application that controls the system.

LOGISTICS

There are different types of operations and logistics services that

certain manufacturers and companies offer, including product

flow control from the manufacturer to end user, product storage,

production, packaging, warehousing, provisioning, certifications,

shipping, and security. Depending on the level of service, there are

three basic types of logistics for managing dedicated devices:

TYPE COVERAGE PURPOSE

In house All services in
house

An in-house logistics team is ready
to prepare, provide, and ship
software/hardware to end users.

Individual
third party

Partial in-house
services

Services may include warehousing
and in-house IT work but do not
involve processes such as shipping
software/hardware to the end user.

Full third
party

Every process
relies on third-
party services

All logistics are handled externally,
including shipment directly to a
fulfillment service without seeing
the product.

It is especially important to note that involving a third party may

introduce compliance issues as well as reduce visibility into and

control over processes. These matters should be weighed if you are

considering any level of managed services.

CONCLUSION
The entire ecosystem around the single-purpose Android device,

which aims to provide hardware, software, and even logistics, is

a unique response to the growing demands of specific industries

like healthcare, automotive, and consumer electronics. For these

industries, devices must meet a variety of requirements, such as

safety, licenses (which can often vary from country to country), an

intuitive user experience, and simple modifications of the OS and UX.

Above are the key fundamentals for developing, deploying, and

managing single-purpose dedicated devices, offering different levels

of service — from full to partial service. The benefits that such devices

offer include ease of handling, security, logistics, and an excellent

user experience on the client side due to a customizable UX. Although

challenges exist, if the concepts explored here are taken into account,

any potential setbacks can be limited. Finally, it is important to note

that the demand for such devices is increasing, and we can expect the

expansion of existing solutions, further innovation across industries,

and ultimately, continued growth in the widespread use of dedicated

devices in the future.

ADDITIONAL RESOURCES

• Android Open Source Project (AOSP) – https://github.com/

aosp-mirror

• Android Basics in Kotlin – https://developer.android.com/

kotlin/androidbasics

• Dedicated Devices Cookbook – https://developer.android.

com/work/dpc/dedicated-devices/cookbook

•  https://solutionsreview.com/mobile-device-management/

understanding-the-difference-between-mdm-mam-emm-

and-uem/

• https://devops.com

WRITTEN BY RADIVOJE OSTOJIC,
PRINCIPAL SOFTWARE ENGINEER, BRIGHTMARBLES

Radivoje Ostojic is a principal software engineer
at BrightMarbles with extensive experience in
mobile development, ranging from Android and
Kotlin to Flutter and cross-platform development. He
has architected complex software systems, led teams, written
technical articles, and spoken at conferences. He currently
partakes in developing software for some of the most influential
start-ups across various industries.

DZone, a Devada Media Property, is the resource software developers,
engineers, and architects turn to time and again to learn new skills, solve
software development problems, and share their expertise. Every day,
hundreds of thousands of developers come to DZone to read about the latest
technologies, methodologies, and best practices. That makes DZone the ideal
place for developer marketers to build product and brand awareness and drive
sales. DZone clients include some of the most innovative technology and tech-
enabled companies in the world including Red Hat, Cloud Elements, Sensu, and
Sauce Labs.

Devada, Inc.
600 Park Offices Drive
Suite 150
Research Triangle Park, NC 27709

888.678.0399 | 919.678.0300

Copyright © 2021 Devada, Inc. All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or
by means of electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

https://www.marketresearchfuture.com/reports/byod-enterprise-mobility-market-6699
https://github.com/aosp-mirror
https://github.com/aosp-mirror
https://developer.android.com/kotlin/androidbasics
https://developer.android.com/kotlin/androidbasics
https://developer.android.com/work/dpc/dedicated-devices/cookbook
https://developer.android.com/work/dpc/dedicated-devices/cookbook
https://solutionsreview.com/mobile-device-management/understanding-the-difference-between-mdm-mam-em
https://solutionsreview.com/mobile-device-management/understanding-the-difference-between-mdm-mam-em
https://solutionsreview.com/mobile-device-management/understanding-the-difference-between-mdm-mam-em
https://devops.com

